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Abstract

Axisymmetrical free vibrations of underwater spherical shells have been

studied in a previous paper [I]. In this present paper, we shall investigate

the axisymmetric forced vibrations of underwater elastic spherical shells.

The investigation of harmonic forced vibrations will be based on a single

six-order differential equation of motion ln normal displacement. Investiga-

tion of aperiodic forced vibrations will be based on a pair of coupled equa-

tions for general motions in normal and tangential displacements. General

expressions of the responses due to all these excitations are derived.

Examples are given and results are plotted.



Introduction

E uations of Motion

In reference [1], the general equations of motion for an underwater

elastic spherical shell were derived as
2

I-v 2.-
Lu+Lw=- � PRU

uu uw E s

I-v 2- I-v 2
2 2

L U+ L w � p Rw+ R  p+f!
wu ww E s Eh a

in which the operators are

L = - I+a![�-v! + V � ]2 1
Uu 2

1-x

2 � d
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2-�-x 
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dx
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L
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cV + c  I-v!V + 2�+>!
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In a previous paper [1] axisymmetric free vibrations of underwater

spherical shells were investigated. A pair of basic coupled equations of

motion based on the bending theory were derived by applying Hamilton's

principle. These equations are for general motions in terms of normal and

tangential displacements. For harmonic motions, the basic coupled equations

were combined into a single six-order nonhomogeneous differential equation

of motion in normal dispacement. The interacting problem was then solved

by introduci.ng the velocity potential of the water field and by assuming

that the normal velocity of the shell was equal to that of the water field

at the surface of the shell. The frequency equation was derived and mode

shapes were obtained. In the present paper investigations of harmonic and

aperiodic forced vibrations of elastic spherical shells in water are based

on the single six-order equation and the pair of coupled equations,

respectively.



For harmonic motions these equations were transformed into

L U + L W = Q U
2

uu uw

�!
2

L U+ L W = 6 W+ R  P +F!
wo ww Eh a

which can be reduced into a single equation

1-2 2
� +a% +b7 +c!W = R  dV +e!  P +F!

Eh a �!

in which

P  x! = ~ pR Z 2 2 C P  x!2 2n+l

a 2n+2 n n
n=0

C = f W x!P  x!dx
1

�!

The frequency equation was derived as

-aA +bi -c-G ~ �  dX-e! =03 2 2Ro 1
n n n hp n+1 n

s

The detailed notations in these equations were explained in [1].

2. Harmonic Forced Vibrations

a. Normal Displacement Response

For a given harmonic force excitation

f x,t! = F x!coact

['|t' +av +bV +c]W x! � n Z 2 +2 < [d ~ +e]P  x!
s n 0

2 R [d V +e] F x!

which is normal to the surface of the shell with the frequency u!, the

equation of motion �! together wi.th the expression of the hydrodynamic

pressure from Eq. �! becomes



Since the Legendre polynomiaLs P  x! are a complete and orthogonal
n

set, and they satisfy the differential equation of the free vibration,

we may expand both W x! and F x! in the infinite series of P  x!,
n

W x! = Z A P  x!
n n

�0!

F x! = Z F P  x!
n n

in which the coefficients F of the known forcing function can be

determined by using the orthogonality condition of P  x! as

F = 2 J F x! P  x!dx2n+1 1

The substitution of Eq. �0! into Eq.  9! and the use of the identities

of P  x!, together with the definition of Eq. �! asn

C = j W x!P  x!dx=2 1A1 2
�2!

result in

Z A [-! +ah. -b! +c]P  x! � 03 2 2 Rp 2n+1 2
Z A � [-d'A +e]P  x!

n n n n n hp 2n+2 n 2n+1 n nn=0 s n.=O

2 R Z F [-d A +e]P  x!
n=O

�3!

A = I F
n n n �4!

in which

n 3
X -a> +b> � -<1

2Ro l

n n n hp n+1 n
s

Due to the orthogonality condition of P  x!, we may equate the coef ficlents
n

of the infinite series to give



w x,t! = cosut Z I F P  x!
nnn �6!

For illustration let us consider a special case. Assume that azound

the circle x = C of the shell surface there acts an axisymmetrically

distributed line force of the intensity F x! = 1 ib/in. which is normal

to the surface and hazmonic in time. This force can be expressed as

F x! = � � vl-q 5 x- !.2

Then the expression for F from Kq. �!'!! becomes
n

2n+1 /
�8!

where

 x! <  x-<! dx = P  <!
1

�9!

has been used. Thus, Eq. �6! gives

w x,t! = cosset ~ Z �n+1! I P  g!P  x!
2R n n n

n 0
�O!

b. Tangential Displacement Response.

The tangential displacement due to the harmonic force excitation

normal to the shell surface, with the frequency m, can be derived by

introducing the series expansions

W x! = Z A P  x!
n n

U x! = Z B P  x!
1

n=l

When a forcing fzequency is equal to one of the natural frequencies

which satisfy Eq. �!, a corresponding A becomes infinite: this is

the case of resonance. For M different Prom natural frequency, the normal

displacement gives



into the first equation of motion �!. Kith the aid of the identities of

the Legendre polynomials P  x! and the associated Legendre polynomials

P  x! as
1

n

V P  x! -!, P  x!
2

n n n

1

P  x! = - l-x ! � P  x!1 22d

n dx n �2!

 V � � !P  x! = -X P  x!2 1 1 1
2 n n n

we obtain

-�+E! K B [1-v-A ]P  x! � Z A [c l-v!-�+v!-cX j [-P  x!]1 1
n n n n n nn=l n=l

Z BP  x!
2 1

n n �3!

of the infinite series to give

�4!B = H A = H I F
n n n n n

in which

c X -1+v!+1+v
H

n
�+E!  A -1+v!-0 2

n

�5!

and A = T. F is given in Eq. �4!. Thus, the tangential displacementn n n

yields

u x,t! = cost!t Z I H F P  x!1

nnnn
n=l

�6!

For illustration let us consider a special case of axisymmetrically

distributed line forces acting around the circle x = g of the shell

1Due to the orthogonality condition of P  x!, we may equate the coefficients
n.



surface. The coefficients of the forcing function F are given in
n

�6! we haveEq. �8!. Thus, from Eq.

u x» t! = coscOt Z �n+1! I H P  <!P  x!
1

nnn n �7!

3. A eriodic Forced and Free Vibrations

Introducing the differential operators from Eqs. �! into Eqs. �!,

we rewrite the equations of motion as follows:
1

1 2 2 2-�+a! [I-u- + V ]u x,t!- l-x ! d [c l-v!- I+9!+cV ]w x,t!
1-x

= � Au x, t!
�8!1

[c l-v! �  I+u!+eV ] � �-x ! u x,t!+[cV +c�-V!V +2�+v!]w x,t!2d22 4 2

= -Aw x, t! + A�[P  x, t! + f  x, t! ]
s

in which

I-v 2
2

A= Rp �9!

w x, t! = Z W  t!P  x!
n n

u x, t! = Z U  t!P  x!
1

n n �0!

f x,t! = 2 F  t!P  x!
n n

Applying the orthogonality condition of the Legendre polynomials [2],

Now, we will solve Eqs. �8! together with the known initial conditions

w x, 0!, w x, 0!, u x, 0! and u x, 0! . Let us expand w, u, and f in terms

of the infinite series of the appropriate Legendre polynomials as



~l I a~ ~~2d 2 ~ n+m '.
-1 n 2n+1  n-m! '.

�1!

J 1 P  x!P< x!dx = 0 for kgn

we can express the coefficients of the initial conditions as

W �! = f   ,0!P   !dx
2n+1 1

W �! = t w x,0!P  x!dx
2n+1 1

�2!

U �! = � , S u x,0!P  x!dx2n+1 n-1 .' 1 1
n 2  n+1! . '-1 ' n

The coefficients of the forcing function give

F  t! = J f R t!P  x!dx
2n+1 1

�3!

The hydrodynamic pressure has been derived in [1] as

p  x,t! = -pR Z � � D  t!P  x!2n+1 d

a ' 0 2n+2 dt n n
n=0

�4!

where

D  t! = f w x,t!P  x!dx �5!

with Eq ~ �0!, D  t! can be written as
n

D  t! = W t!
2

�6!

then Eq. �4! becomes

p  x,t! = -pR Z +1 0  t!P  x!1

n 0
�7!

Substituting Kqs. �0! and �7! into Eqs. �8!, and using the identities

of Legendre polynomials as shown in Eq. �2! yields



� �+F! Z U [1-v-A ]P  x! � Z W [6 �-v! � �+v!-EA ] [-P  x! ]1 1
n n n n n nn=l n=l

~ ~ l
=-A Z UE  x!

n n
�8!

Z U A [c�-v!-�+v!-c! ]P  x! + 2 W [cA -c l-v!X +2�+v!]P  x!
n n n n n n n nn~l n==0

-AZ WP  x!+A p [-- � W +F]F  x!1 ELp
n n hp n+1 n n nn=0 s n=0

Due to the orthogonality conditions of P  x! and F  x!, two coupled1
n n

ordinary differential equations for each pair of W
n

from Eqs. �8! as follows, for n

and U are given
n

I! =-y U +eW
n n n n n

� 9!

KW=AeU-aW+F 1
nn nnn nn hp n

S

in whx.cn

y = �+v! A -1+v!/A
n n

e [c A -1+v!+1+v]/A
n n

�0!
a = t~!  A -1+v!+2�+v! ]/A

n n n

K = 1+~
Rn 1

n hp n+1
8

1
00 00 hP 0

s
�1!

We shall consider the special cases of n:*0 and n=l and the general cases

of n > 2 as follows.

Special case of n = 0. For the special case of n = 0, there is only

one equation in W resulting from the second equation of Eq. �8!



Applying the Laplace transform on Eq. �1! yields

W  s! = [ P  s! + s W �! + W �!]

s K0
�2!

W  t! = h f0 F0 T!X  t-x!dT + W0�!X  't! + W0�!X  't!0 K0hp 0 0 0 �3!

where

X  t! = � sinct t
1

0 ct,0 0

2 0 2 �+>!

0 �+ !A
hp

s

�4!

2Note that AQ0 is the same as the frequency parameter Q for n=0 [I]
2

which means the shell vibrates with only one frequency u

Special case of n=l. Another special case occurs for n=l.

Introducing n=l into Eq. �0! gives

Yl = el = 2 ol �+~! �+v! ~A1

�S!Rp
1 2hp

Then Eqs. �9! become

Ul = -Ylvl+ YlW1
�6!

1Klw = 2Ylvl 2Ylwl + h Fl
8

Combining Eqs. �6! results in

KW +2U = F
1 hp 1 �7!

Inverting the Laplace transform and making use of the theorem on

convolution, we obtain
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Equation �7! indicates that the shell undergoes the rigid body motion

2
which corresponds to the zero frequency parameter 0 for n 1 [1].

Applying the Laplace transform on Eqs. �7! and the first equation of

Eq. �6! results in

K s Wl s! + 2s Ul s! = � F  s! + sI.K1WI�!+2U1�!]
hp 1

+ K1W1 �! + 2Ul �!

ylW1 s!+ Is +yl]Ul s!sU1 !+1 !

Solving Eqs. �8! for W  s! and U  s! gives

�8!

W  s! = <  F  s!  s+Yi! +s KW �! +s KW �!
hhp 1

+ s[K W �! + 2U1 Yl + 1W1�! + 2Ul  !]Y

�9!Yl
1 L h 1 11 11hp 1

+ s[K W �! + 2U �!]y + [K W �! + 2U �!]y

where

5 - K s  s +CI !
1 1

�0!

2 � 2 �+a! �+>! 2

2hp
s

Note that Aa is the same as the frequency parameter 0 for n=l [1] .2 2
1 u

Inverting the Laplace transform on Eqs. �9!, and using the partial fraction

IIIetiIod together with the theorem on convolution, we obtain



W  t! = J F  t!X  t-v!d'T + W �!X  t! + W �!K  t!1 Khp
1 s

+ [Ul  ! 1  ! + Ul�!Y< t!]K 1 1

�1!

U  t! = j F  T!Y  t-T!dT + W.  Q!Y  t! + W �!Y  t!Klhp 0 1

1 o! 1  ! + 1 o! 1  !

where

2
Yl 1 yl

x  t! = 2 [ sinmlt+t]2 ylgl
1

1 1Y  t! = � [- � sing t+t]
1 2 u 1

Ql
2

2y K a -2Y
z  t! = 2 [ sino, t+t]

K x~ 1 12Y

�2!

-e W  s! +  s +Y !U  s! = s U �! + V �!
n n n n n n

�3!

[Ks+a ]W  s! � A e U  s! = F  s! +KsW �! +KW �!
n n n n.nn hp n n n n n

s

The solutions of Eqs. �3! in W  s! and U  s! are
n n

1 1W  s! =HA F  s!  s+y ! +s KW �! +s KW �!2 3 2
n Ahp n n n n n n

s

+ s[K Y W �! + g e U �!] + K y W �! + X e U �!!

General cases of n > 2. For n > 2, Eqs. �9! correspond to the

general cases. Applying the Laplace transform to the coupled equations �9!

yields
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1 1 3 2U  s! =+> e F  s!+a KU �!+sKU �!
n Ahp nn n n n n �<!

+ s[K e W �! + a U �!] + K e W �! + o U �!]

where

K  s+u ! a+6 !
2 2 2 2

n n n

�5!
2 1

n 1
 Ky +a + [ Ky+cr ! � ~K  ay-A e !] !2 2 2

2 2K nn n nn n n nn nn

n

2 2
Au and A8

n n
It can be shown that

�!, with AQ
2

n
and AB

2 2

u n
corresponding to the upper branch corresponding

2
to the lower branch

Eqs. �4! and using the partial fraction method together with the theorem

o f convolu t ion, we ob tain

W  t! = h J F  T!X  t-T!dt + W �!X  t! + W �!X  t!
n KhP 0 n n n n n n

n s

+ K [U �!Y  t! + U �!Y  t!]

�6!
1V  t! ~ h I F  't!Y  t-T!d'T + W �!Y  t! + 'W �!Y  t!

n s

+ U �!Z  t! + U �!Z  t!

where

sinu t
n

y  t! - [- � sinu t + � sing t]n 1 1

n 2 ~2 u n 5 ll
u n n

n n

�7!

2
u

n n

are the roots of the frequency equation

Again, applying the inverse Laplace trans f orm on

2

n. n
sing t]

n
n
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2 2
Ku-a K 5 -v

Z  t! = 2 [ sinu t � ~ sing t]

Equations �3!, �1!, and �6! are the most general expressions for the

coefficients of the displacements which take into account the effects of the

membrane, bending and hydrodynamic pressure. Substituting Eqs. �3!, �1!

and �6! into Eq. �0!, and taking note of P  x! = 1, P  x! = x and

Eqs. �2! and �3!, result in

w x,t! = f f f y,T![ � X  t-v! + 3xy � X  t-T!1 t 1 I
2hp 0 1 Kp 0 K 1

s

+ Z P  x! P  y! X  t-x! ] dydee
2n+1

+ � f  w y,0![X  t! + 3xyX  t!] + w y,O![X  t! + 3xyX  t! ]

+ 3xP  y! � [u y,0!Y  t! + u y,0!Y  t!]
1

+ Z P  x! �n+1!  P  y! [w y,0!X  t! + w y,O!X  t! ]
n=2

 n-1 ' ~
+ P  y! > [u y,0!Y  t! + u y,O!Y  t!]!]dy

�8!

u x,t! = f f f y,t![3yP  x! � Y  t-T! + Z P  x!P  y! Yn t-T!]dydT1 t 1 1 1 1 2n+l
2hp 0 -1 ' 1 Kl 2 n n K

+ � f [3yP  x! [w y,O!Y  t! + w y,0!Y  t!]

+ � P  x!P  y! [u y,O!Z  t! + u y,0!Z  t! ]
2 1 1
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+ Z P  x! �n+1! P  y! [w y,0! Y  t! + w y,0!Y  t! ]
n=2

1+ P  y!   1! [u y,0
  t! + u y,0
  t!] !dy

Wp  t! = f F  ~! sinQ  t-T! dv1 t

hp u0 0 0

W  t! = f F �! [ � sine  t-s!+ t-T! ]dr1 t. 2

1 3hp 0 1 m 1
s

U  t! = f F  ~! [- � sinQ  t-.~!+ t-~!]d~1 1

1 3hp 0 1 u 1
s

Ag +1-v-X
2

f0 F  t! [ sinn  t-z!
Ahp  u -8 ! n

s n n

w  t!�
n

�9!
2

Ag +1-V-!i
n n.

8
sing  t-v! ]dr

n
n

<t! = f F  T![- � sinu  t-z!
1+@ 1

n <   2 ~2! 0 n u n
s n n

+ � sin8  t-v!]de
1

n
n

These results agree with Baker's work [3].

Me now proceed to illustrate the forced vibrations. Assume that we

have the homogeneous initial conditions,

Let us consider the special case of spherical shell vibrations in a

vacuum that is based on the membrane theory with homogeneous initial

conditions. This special case can be deduced from the present general

expressions, Substituting the results of p = v 0 in Eqs. �0!, �4!

and �0! and the homogeneous boundary conditions into Eqs. �3!, �1!, and

�6! results in
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w x,0! = w x,0! = u x,0! = u x,0! = 0 �0!

and that the loading is applied at time t = 0. Two special cases will be

considered: one case for a given impulsive force and the other case for a

given step force.

Case a. Suppose that around the circle x = 4 there acts a unit axisymme-

trically distributed impulsive force that is normal to shell surface. This

force can be expressed as

f x,t! = � ~Z-< d x-q� t! �1!

Then from Eqs. �8! we obtain

2 00

w x,t! = [ � X  t! + 3xg � X  t!+ Z P  x!P  g! X  t! j
1-r, 1 1 2n+1

2RhP Ko 0 n n n

�2!
2 CG

~ x.<! = ~2~ � p  x! ~ ' q ~! + ~ >  ~!p  i! ~ ~  <	

Case b. Suppose that around a circle x = g the shell is subjected to

the axisymmetrically distributed step forces that are normal to the shell

surface, i.e.

f x,t! = � Kl-< 5 x-g!H t!
2

�3!

where H t! denotes the Heaviside unit step function. Noting that

f H z!sine  t-T!dT = � �-cosa t!
1

0 n Q n
n

�O!

we obtain from Eqs. �8!

Y]
w x, t! =   �-cosa t! + 3x 2Rhp 0 ' 2

s K0cI0 1 1

2

[ �-cosa t!+ � ]
1 2
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2CD a -' 

+ Z P  x! P  g! f,, �-cosa t!2n+1 n n

n=2 K  a -0 ! a
n n n n

2

n n
�-cosl3 t! ]!

g 2 n

n

�S!

1' 1 Yl 1
u x, t! �$P  x! I, �-cosa t! + � ]

2Rhp 1 2 2 1 2
S

1 1 1

CD e �n+1!

+ Z P  x! P  <! 2 2 [
n=2 K  a -g !

n n n

1 �-cosa t! + � �-cosB t! ]]1

n ~2 n

n n

4. Numerical Examples

Numerical examples for harmonic and aperiodic forced vibrations are

presented for a complete spherical steel shell vibrating both in an

infinite water field and in a vacuum, for which E=30xl0 psi, v = 0.3,
6

R = 120 in, h/R = 0.03, p = 0.7347xl0 lb.sec /in and p/p = 0.1304.
-3 2 4

The results are plotted in the solid and the dotted lines which denote

vibrations in water and vacuum respectively.

In Figs. 1 and 2, the responses due to a unit harmonic line force per

unit length applied at the equator are p.Lotted versus e. Fig. 1 shows

that the responses due to forces of the: arne frequency differ greatly when

the vibrations are in water and when they are in vacuum. This is because

the forces of the same frequency will excite different modes for these two

cases. For the sake of comparison, cons:Lder the forces of different

2 2f requencies: 0.403 and 0 = 0. 747, which are respectively
water vacuum

the mean values of the natural frequencies corresponding to n = 3 and n = 4,

as shown in Table 1 of [1]. Results are shown in Fig. 2,

The responses due to a unit impulsive line force per unit length applied

at t.hi equator are plotted in Figs. 3 and 4. Fig. 3 shows the displacements

at the equator versus time, and Fig. 4 shows the displacements versus e
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for t = 0.0006 sec. At that instant the equator undergoes the maximum

displacement that can occur for the vibrations in water.

The responses due to a unit step line force per unit length applied

at the equator are shown in Figs. 5 and 6. Fig. 5 shows the displacements

at the equator versus time, and Fig. 6 shows the displacements versus 6

for t = 0.0024 sec. At that instant the equator undergoes the maximum

displacement that can occur for the vibrations in water.
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