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Abstract

Axisymmetrical free vibrations of underwater spherical shells have been
studied in a previous paper [l]. In this present paper, we shall Investigate
the axisymmetric forced vibrations of underwater elastic spherical shells.
The investigation of harmonic forced vibrations will be based on a single
six-order differential equation of motion in normal displacement. Investiga-~
tion of aperiodic forced vibrations will be based on a pair of coupled equa~
tions for general motions in normal and tangential displacements. General
expressions of the responses due to all these excitations are derived.

Examples are given and results are plotted.



Introduction

In a previous paper [1] axisymmetric free vibrations of underwater
spherical shells were investigated. A pair of basic coupled equations of
motion based on the bending theory were derived by applying Hamilton's
principle. These equations are for general motions in terms of normal and
tangential displacements. For harmonic moticns, the basic coupled equations
were combined inteo a single six—order nonhomogeneous differential equation
of motion in normal dispacement. The interacting problem was then solved
by introducing the velocity potential of the water field and by assuming
that the normal velocity of the shell was equal to that of the water field
at the surface of the shell. The frequency equation was derived and mode
shapes were obtained. 1In the present paper investigations of harmonic and
aperiodic forced vibrations of elastic spherical shells in water are based
on the single six-order equation and the pair of coupled equations,

respectively.

1. Equatlons of Motion

In reference [1], the general equations of motion for an underwater

elastic spherical shell were derived as
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For harmonic motions these equations were transformed into

2
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2
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which can be reduced into a single equation
6, A4, 2 1-v
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in which
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n=0
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The frequency equation was derived as
3 2 2 Rp .
An akn + bAn ¢ hp (dA -e) 0 (7)
The detailed notations in these equations were explained in [1].
2. Harmonic Forced Vibrations
a. Normal Displacement Response
For a given harmonic force excitation
f{x,t) = F(x)coswt (8)

which 1s normal to the surface of the shell with the frequency w, the
equation of motion (4) together with the expression of the hydrodynamic

pressure from Eq. (5) becomes
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Since the Legendre polynomials Pn(x) are a complete and orthogonal
set, and they satisfy the differential equation of the free vibration,

we may expand both W(x) and F(x) in the infinite series of Pn(x),

Q0
W(x) = £ AnPn(X)
n=0
o (10)
F(x) = nio FnPn(x)
in which the coefficients F_  of the known forcing function can be
n
determined by using the orthogonality condition of Pn(x) as
_ 2n+l L1
n- 7 /0 E(x) P (x)dx (11)

The substitution of Eq. (10) into Eq. (9) and the use of the identities
of Pn(x), together with the definition of Eq. (6) as

1
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result in
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Due to the orthogonality condition of Pn(x), we may equate the coefficients

of the infinite series to give

An = LF | (14)
in which
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When a forcing frequency is equal to one of the natural frequencies
which satisfy Eq. (7), a corresponding An becomes infinite: this is
the case of resonance. For w different from natural frequency, the normal

displacement gives

w{x,t) = coswt nEo InFnPn(x) (l6)

For illustration let us consider a special case. Assume that around
the circle x = § of the shell surface there acts an axisymmetrically
distributed line force of the intensity F(x) = 1 1b/in. which is normal

to the surface and harmonic in time. This force can be expressed as

PG = ¢ Vi-g? 8Ge). (1)

Then the expression for Fn from Eq. (14) becomes

20+l 2
F o= = V1T Pn(i;) (18)
where
1P 08 G-D)dx = B_(2) (19)

has been used. Thus, Eq. (16) gives
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w(x,t) = coswt

b. Tangential Displacement Response
The tangential displacement due to the harmonic force excitation
normal to the shell surface, with the frequency w, can be derived by

introducing the series expansions

W(x) = ?0 AnPn(x)
"~ (21)
U(x) = & BnPi(x)

n=1



into the first equation of motion (3). With the aid of the identities of
the Legendre polynomials Pn(x) and the associated Legendre polynomials

Pi(x) as

Van(x) - AP (x)

1
P = -2 Lk () (22)
2 1 1 1
(V== 2)Pn(X) = ~AnPn(X)
1-x
we obtain
v 1 > ] 1
_(1+e)n}=:l Bn[l—v—ln]Pn(x) - nfl An[a(l-v)—(1+v)—ekn][—Pn(x)]
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= Q" T BnPn(x) (23)
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Due to the orthogonality condition of P:(x), we may equate the coefficlents

of the infinite series to give

B =HA = HnI F (24)

in which
e(kn—l+v)+1+u

H = 5 (25)
(L+e) (A_=1+v)-0

and Ah = InFn is given in Eq. (14). Thus, the tangential displacement
yields
> 1
u{x,t) = coswt & T H F P (x) {26)
n=] B oDnD

For illustration let us consider a special case of axisymmetrically

distributed line forces acting around the circle x = f of the shell



surface. The coefficients of the forcing function Fn are piven in

Eq. (18). Thus, from Eq. (26) we have
=]

1
z (2n+l)IanP“(§)Pn(x) (27)

2
u(x,t) = cosWt —l%%—
n=1

3. Aperiodic Forced and Free Vibrations

Introducing the differential operators from Eqs.(2) into Egs. (1),

we rewrite the equations of motion as follows:
1

~(1+€) [1-v- 11 >+ 72 1ux, £)-(1-x2) - e V) - (147 Tu(x, 1)
~x
= —Au(x,t) . (28)
[e(1-v)-(1+v)+ev2]§;(1-x2)iﬁ(x,t)+[ev4+e(1-u)v2+2(1+v)]w(x,t)
= -Ai(x,t) + AE%;[Pa(x,t) + £(x,t)]
in which
A = l;:UZ Rzps (29)

Now, we will solve Egs. (28) together with the known initial conditions
w(x, 0), wix, 0), u(x, 0) and ﬁ(x, 0). Let us expand w, u, and f in terms

of the Infinite series of the appropriate Legendre polynomials as

wix,t) = nEown(t)Pn(x)
ulx,t) = nzl Un(t)Pi(x) (30)
f(x,t) = £ F ()P (x)

n=0

Applying the orthogonality condition of the Legendre polynomials [2],
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(31)

/L PP0PTx)dx = 0 for 4n

we can express the coefficients of the initial conditions as

2n+1
Z2

i
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(32)
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U (0 = 55—
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The coefficients of the forcing function give

2n+l

Fn(t) T2

fll £, )P_(x)dx (33)

The hydrodynamic pressure has been derived in [1] as

s e 20%l d
Plot) = R & S G (0 (0 (3)

where

D (£) = /1, ¥(x,0)P_(x)dx (35)

with Eq. (30), Dn(t) can be written as

D_(t) = 2 - W) (36)

then Eq. (34) becomes

w0 1 .
Pa(X.t) = ~pR nEO o+ Wn(t)Pn(x) (37)

Substituting Egs. (30) and (37) into Egs. (28), and using the identities

of Legendre polynomials as shown in Eq. (22) vields
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Due to the orthogonality conditions of Pn(x) and Pi(x), two coupled
ordinary differential equations for each pair of Wn and Un are given

from Egs. (38) as follows, for o > 1

U =~ U +eW
n n Il on
(39)
' _ _ 'L
ann = AnenU g W + hps F
in which
Y, = (1+e)(An—1+\))/A
e = [e(An—1+v)+1+v]/A
(40)
cn = [eln(kn—1+v)+2(l+v)]/A
- Ro 1 _
Kp=1+ ho_ n+1

We shall consider the special cases of n=0 and n=1 and the general cases
of n > 2 as follows.
Special case of n = 0. For the special case of n = 0, there is only

one equation in WO resulting from the second equation of Eq. (38)

. 1
Ko¥o = ¥ + B Fy (41)



Applying the Laplace transform on Eq. (41) yields

— 1 1 = . .
wo(s) = 5y [KQhp FO(S) + g WD(O,' + WO(O)] (42)
s2+‘* S
Ko

Inverting the Laplace transform and making use of the theorem on

convolution, we obtain

_.._._.l._,_.t - . .
wo(t) = Kohps IO FO(T)XO(t TYAT + WO(O)XO(t) + WO(O)XO(t) (43)
where
X ( -1 ina t
0 t) = ao s nao
a
R iy (44)

Rp
0 (14 EE;)A

Note that Aag is the same as the frequency parameter Qi for n=0 [1)]
which means the shell vibrates with only one frequency ao.
Special case of n=l. Another special case occurs for n=1.

Introducing n=l1 into Eq. (40) gives

'Yl = g = '%‘ O'l = (l+€) (1+\))/A

1
K =1+ RO (43)
1 2hpS
Then Egs. (39) become
ﬁ = =y, U, + v.W
1 171 171 (46)
K,W, = 2y,U, - 2y, W + L
171 171 171 hps 1
Combining Eqs. (46) results in
- . l
KW, + 20, =~ F (47)

171 1 hp "1



Equation (47) indicates that the shell undergoes the rigid body motion
which corresponds to the zero frequency parameter Qﬁ for n=1 {1].
Applying the Laplace tramsform on Eqs, (47) and the first equation of

Eq. (46} results in

K szﬁlcs) + 25261(5) = 1(8) + S[KW (00420 (0]

L
1 hps

+ Klwl(O) + 20,(0) (48)
YWy (s) + [s%4y, 10, G8) = sU;(0) + T (0)

Solving Eqs. (48) for ‘ﬁl(s) and .Gl(s) gives

%{——— fi(s) (52+Y1) + s KlWl(O) + s Klﬁl(O)

_ 1 3 2
W, (s) he_

+ s[Klwl(O) + 20,01y, + [Klwl(O) + 2U1(0)]Y1}

U;(s) = 37{35; Fi(s) + TKU,(0) + s°K, U, (0)
+ s[K W (0) + 20 (0) ]y, + [KW, (0) + 26, (0) 1y, }
where
2,.2. 2
A = Kls (s +al)
(50)
2 _ _2.  (1+4e) (1+v) 2

oy = Y1(1+ m ) = x (1+ Rp )]

1 1+ =t

thS

Note that Aai is the same as the frequency parameter Qi for n=1 [1].

10

Inverting the Laplace transform on Egs. (49), and using the partial fraction

method together with the theorem on convolution, we obtain
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SR S - . ’
Wl(t) = thps fo Fl(T)Xl(t T)dT + wl(O)XI(t) + Wl(O)Xl(t)
2 ) .
+ EI [Ul(O)Yl(t) + Ul(O)Yl(t)]
(51)
I _ | y
Ul(t) = Eﬁ’; fo Fl(T)Yl(t TYdT + wl(O)Yl(t) + wl(O)Yl(t)
+ Ul(O)Zl(t) + Ul(O)zl(t)
where
ey = L [O‘i_Y ina. t+t]
X, (t) = —— sina. t+t
1 012 Ylu‘l 1
1
MR R S (52)
1(t) == [- 5 sina t+t]
o 1
1
2y, K uz-ZY
1 171 1
Z,(t) = [ sing. t+t]
1 K 0£2 2Ylal 1

171

General cases of n > 2. For n > 2, Egs. (39) correspond to the
general cases. Applying the Laplace transform to the coupled equations (39)
yields

—— 2 —_ _ .
e W, (8) + (™Y )T (s) = s U_(0) + U_(0)
(33)
2 — = I :

[Kns +on]wn(s) - Anenun(s) = 35; Fn(s) + Knswn(O) + Kan(D)

The solutions of Egs. (53) in ﬁ;(s) and ﬁ;(s) are

— _ 11 L2 3 2
W (s) = E{hps F (8)-(s™+y ) +s KW (0) +s K W (0)

s (K y W (0) + ) e U (0)] + Knynﬁn(o) + A e U (0)}
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— Sl 1 - 3 2 ¢
Un(s) = K{___hps enFn(s) + 3 KnUn(O) + g KnUn(O) (54)
+ s[Knean(O) + cnun(o)] + Knenwn(O) + cnun(O)}

where

~ 2.2 .2, .2
A= Kn(s +an)(s +Bn)

2 1 (55)
% 1 2 2.2

= — - -f -

B2 ZKn {KnYn + 0n * [(KnYn+0n) 4Kn(OnYn Anen)] }

n

It can be shown that Aai and ABE are the roots of the frequency equation
(7), with Aaﬁ corresponding to the upper branch Qi, and ABE corresponding
to the lower branch Qﬁ. Again, applying the inverse Laplzce transform on
Eqs. (54) and using the partlal fraction method together with the theorem

of convolution, we obtain

l t » L]
Wn(t) = Knhps J‘O Fn(T)Xn(t—T)d'[ + wn(O)Xn(t) + wn(O)Xn(t)
An . ]
+ E; [Un(O)Yn(t) + Un(U)Yn(t)]
(56)
l t - »
Un(t) = Knhps IO Fn(T)Yn(t—T)dT + Wn(O)Yn(t) + Wn(O)Yn(t)
+ Un(O)Zn(t) + Un(O)Zn(t)
where
a_-y BZ-Y
X (t) = —* 5 22 sina t - 22 sing ]
n a-g an n Bn n
n
°n 1 1
Y“(t) =55 [~ o sina t + 5 siant] (57)
4] n n
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Equations (43), (51), and (56) are the most general expressions for the
coefficients of the displacements which take into account the effects of the
membrane, bending and hydrodynamic pressure. Substituting Eqs. (43), (51)
and (56) into Eq. (30), and taking note of Po(x) =1, Pl(x) = x and

Eqs. (32) and (33), result in

|

1 el 1 _ 1 _
wix,t) = th of lf(y.T)[KO Xy (t-1) + 3xy K, X, (£-1)

o

+ I P (0p (v) & 2“ Zotl X_(t~1)]dydr
n=2 n

+ %'fil{w(y,O)[io(t) + 3xyﬁl(t)] + é(y,O)[Xo(t) + SxyXl(t)]
+ 3P (y) K—i [u(y, 0¥, (6) + a(y,0)¥, (£)]
v PL(0) (20+1) (B (9) [w(y,0)X_(t) + w(y,0)X_(r)]
+ B ) ~5;%§T [u(r,00¥_(t) + a(y,0)¥_(£)]) }dy
(58)
ulx,t) = th Ig I1 £ [3yR] (ot cht-r) + T PR ()2 (e-1) Jayar
n=2 n
+ 2 51 (aypl 0 uy, OF, (1) + w(y,0)Y, ()]
2 __1 y 1 X Y’ l .Y: 1

+ 3 PIOPT W [uly, 02 (6) + a(y,00Z, (6)]



+ nzz Pi(x)(2n+1) Pn(y)[w(y,o)i’n(t) + w}(y,O)Yn(t)l
+ 2 8 0,008 (1) + 4,020 Jay

Let us consider the special case of spherical shell vibrations in a
vacuum that is based on the membrane theory with homogeneous initial
conditions. This special case can be deduced from the present general
expressions. Substituting the results of p =& = 0 in Eqs. (40), (44)
and (50) and the homogeneous boundary conditions into Egs. (43), (51), and

(56) results in

_ __ln_ t . _
Wo(t) = hpsao IO FO(T)51ndo(t T)dT
Wo(t) = == S5 B (1) [2 sina, (t~T)+(t=T) ]dT
1 3hps 0 "1 ul 1
U, (t) = L ft F . {t)[~ 1 sing, (t-T)+{t-T) ]dT
1 3h;:>S 01 al 1
1 ¢ Aa§+1-v—kn
Wn(t) = o (0:2_82) IO Fn(t) ["—-‘“—'{;n"* sinan(t——”f)
Pe oy ~Py (59)
ABi'l'l-\)-)tn
- ———?i:-——ﬂ— sian(t-T)]dT
U . - N -
Un(t) = o (32_32) IO Fn(T)[ = 81nun(t T)
pS n n n

+ —é—— sinf_(t-)]dt

n
These results agree with Baker's work [3].
We now proceed to illustrate the forced vibrations. Assume that we

have the homogencous inftial conditions,

14



15
w(x,0) = w(x,0) = u(x,0) = u(x,0) = 0 (60)

and that the loading is applied at time t = 0, Two special cases will be
considered: one case for a given impulsive force and the other case for a

given step force,

Case a. Suppose that around the circle x = T there acts a unit axisymme-
trically distributed impulsive force that is normal to shell surface. This

force can be expressed as

—

£(x, ) = & V1-¢* 8(x-0)8(0) (61)

Then from Egs. (58) we obtain

/ 2 o0
wix,t) = 1= [—- X (t) + 3xZ —l'X {(t)+ L P (x)P () 2n+1 X {t)]
2Rh s 0 1 n=2 _ n n
. ) (62)
a(x,t) = FE- [3P1G0) 2 (0 + T Pleor (@) By (o))
2ths l n=2 n

Case b. Suppose that around a circle x = the shell is subjected to
the axisymmetrically distributed step forces that are normal to the shell

surface, i.e,
A-t? sx-pyue) (63

where H(t) denotes the Heaviside unit step function. HNoting that

f(x,t) =

|

fg H(T)sinan(t-T)dT = é;—(l—cosant) (64)

we obtain from Egs. (58)

2
/42 Y o, =Y 2
wix,t) = E%Kﬁ— {—— 1 (l—cosa t) + 3x¢ 12 [ 1 zl(l—cosult)+ %“1
s KOGO Klal Ylal
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2 2
© o =Y B~y
+ I P (x)P (1) 2“Zl [ 1 9n(l—cosa t) - 1 n(l-cosB t)]}
n n 2 2 n 2 n
n=2 K (¢ -87) @ g
n n n n 1
/___ (65)
2 Y 2
I T O DL U U £
u{x,t) 2ths {3CPl(x) " az az {1 cos&lt) + 2]
171 1
w 1 en(2n+l) ) 1
+ E Pn(x)Pn(g) 55 [- é (1—cosant) + —E(l—cosﬂnt)]}
n=2 K (a"=R7)
n''n n n n

4. Numerical Examples

Numerical examples for harmonic and aperiodic forced vibrations are
presented for a complete spherjcal steel shell vibrating both in an
infinite water field and in a vacuum, for which E=30x106 psi, v = 0.3,
R = 120 in, h/R = 0.03, o_ = 0.7347x107° 1b.sec’/in” and p/p_ = 0.1304,
The results are plotted in the solid and the dotted lines which denote
vibrations in water and vacuum respectively.

In Figs. 1 and 2, the responses due to a unit harmonic line force per
unit length applied at the equator are plotted versus ©. Fig. 1 shows
that the responses due to forces of the same frequency differ greatly when
the wvibrations are in water and when they are in vacuum. This is because
the forces of the same frequency will excite different modes for these two
cases, For the sake of comparison, consilder the forces of different
frequencies: szater = 0.403 and szacuum = (0.747, which are respectively
the mean values of the natural frequencies corresponding to n =3 and n = 4,
as shown in Table 1 of [1]. Results are shown in Fig. 2.

The responses due to a unit impulsive line force per unit length applied
at the oquator are plotted in Figa. 3 and 4. Fig. 3 shows the displacements

at the equator versus time, and Fig. 4 shows the displacements versus 6
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for t = 0.0006 sec. At that instant the equator undergoes the maximum
displacement that can occur for the vibrations in water.

The responses due to a unit step line force per unit length applied
at the equator are shown in Figs. 5 and 6. Fig. 5 shows the displacements
at the equator versus time, and Fig. 6 shows the displacements versus 6
for t = 0.0024 sec. At that instant the equator undergoes the maximum

displacement that can occur for the vibrations in water.
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